The Difference Splitting Scheme for Hyperbolic Systems with Variable Coefficients
نویسندگان
چکیده
منابع مشابه
Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients
Fourth-order combined compact finite difference scheme is given for solving the time fractional convection–diffusion–reaction equation with variable coefficients. We introduce the flux as a new variable and transform the original equation into a system of two equations. Compact difference is used as a high-order approximation for spatial derivatives of integer order in the coupled partial diffe...
متن کاملA Dimensional Splitting Method for Nonlinear Equations with Variable Coefficients
A numerical method is presented for the variable coeecient, nonlinear ad-vection equation u t + P d i=1 V i (x; t)f i (u) xi = 0 in arbitrary space dimension for bounded velocities that are Lipschitz continuous in the x variable. The method is based on dimensional splitting and uses a recent front tracking method to solve the resulting one-dimensional non-conservative equations. The method is u...
متن کاملGlobal stability for nonlinear difference equations with variable coefficients
Note that for f(x) = e − 1, (1.1) becomes a logistic equation with piecewise constant arguments. Definition 1.1 The zero solution of (1.1) is said to be uniformly stable, if for any ε > 0 and nonnegative integer n0, there is a δ = δ(ε) > 0 such that max{|x(n0 − j)| | j = −k,−k + 1, · · · , 0} < δ, implies that the solution {x(n)}n=0 of (1.1) satisfies |x(n)| < ε, n = n0, n0 + 1, · · · . Definit...
متن کاملNumerical methods for hyperbolic systems with singular coefficients: well-balanced scheme, Hamiltonian preservation, and beyond
This paper reviews some recent numerical methods for hyperbolic equations with singular (discontinuous or measure-valued) coefficients. Such problems arise in wave propagation through interfaces or barriers, or nonlinear waves through singular geometries. The connection between the well-balanced schemes for shallow-water equations with discontinuous bottom topography and the Hamiltonian preserv...
متن کاملTaylor collocation method for systems of high-order linear differential–difference equations with variable coefficients
Universit .2012.07.0 Abstract A Taylor collocation method has been developed to solve the systems of high-order linear differential–difference equations in terms of the Taylor polynomials. Using the Taylor collocation points, this method transforms differential–difference equation systems and the given conditions to matrix equations with unknown Taylor coefficients. By means of the obtained mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Statistics
سال: 2019
ISSN: 2332-2071,2332-2144
DOI: 10.13189/ms.2019.070305